

Dual Energy Phantom V5

The phantom is specially designed for dual energy (DE) purposes and can be used for quality assurance, scanner performance and evaluation of different DE post-processing techniques.

Dual energy capabel CT devices offer the opportunity to distinguish between different tissues and materials in CT images of clinical interest. In particular, the focus is on Ca (-Hydroxyapatite) and lodine (I).

The DEP-V5 is an easy to use phantom providing the opportunity to test CT-scanner performance and to evaluate different DE post processing techniques.

Therefore the phantom provides different virtual tissue equivalent lesions, partially enriched with Ca and lodine.

Ca and lodine enriched lesions appear on an equivalent HU level at a standard scan. The DE scan shows material separation to Ca and lodine.

The DEP-V5 fits to our additionally available thorax phantom. Extension rings, to simulate obese patients are available, as well.

Specifications

Phantom diameter	100 mm
Phantom length	100 mm
Phantom weight	1.0 kg

Material CTWater[®] (0 HU @ 80 - 120 kV) CTIodine[®] (solid iodine) CaHA (Ca⁺⁺)

Dual Energy Phantom V5

The graph shows the correlation between real tissue and phantom material ^[1].

Dual Energy Phantom V5

Schematic view of the DE-Phantom

CT-Scan at 120 kV

www.qrm.de

Specifications of lesions

	ns of the cylindrical inserts: ns Ø 10 mm / H 10 mm
	tion cylinderØ25/H10 mm
CT-values	(HU) valid for 120 kV (\pm 5 HU)*:
Phantom	body 0 HU at 80 - 140 kV*
Calibratio	n cylinder(0 HU at 80 - 140 kV)*
Layer A	Fat + Ca ⁺⁺ / lodine* • Fat -110/-100HU at 80/140kV • Fat + Ca 60HU at 120kV • Fat + Ca -50HU at 120 kV
	 Fat -110/-100HU at 80/140kV Fat + I 60HU at 120kV Fat + I -50HU at 120 kV
Layer B	Soft Tissue + Ca ⁺⁺ / lodine* • Tissue 60/55HU at 80/140kV • Tissue + Ca 200HU at 120kV • Tissue + Ca 100HU at 120 kV
	 Tissue 60/55HU at 80/140kV Tissue + I 200HU at 120kV Tissue + I 100HU at 120 kV
Layer C	Fat + Soft Tissue + Ca ⁺⁺ / Iodine* • Fat + Tissue -28/-24 HU at 80/140 kV • Fat + Tissue + Ca 140 HU at 120 kV • Fat+ Tissue + Ca 30 HU at 120 kV
	 Fat + Tissue -28/-24 HU at 80/140 kV Fat + Tissue + I 140 HU at 120 kV Fat + Tissue + I 30 HU at 120 kV
*specified va	lues. Eff. values can vary due to manufacturing

method and imaging device!

References:

 Schmidt B, Sedlmair M, et al. Assessment of a Quality Assurance Phantom for Dual Energy CT.
 2009, in Proceedings of Radiological Society of North America (RSNA) 95th Scientific Assembly and Annual